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Steady streaming induced between oscillating cylinders 
By P. W. DUCK? AND F. T. SMITH 
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(Received 19 August 1976 and in revised form 21 August 1978) 

The flow of an incompressible fluid contained between two infinitely long circular 
cylinders is considered when the inner cylinder performs small harmonic oscillations 
about the centre of the larger (fixed) cylinder. Numerical solutions are presented for 
the Navier-Stokes equations governing the steady-streaming component of the 
motion. Special attention is then paid to this flow when the Reynolds number of the 
steady streaming is large, and when the radius of the outer cylinder is much larger 
than that of the inner. Results obtained show an improved correlation with experi- 
mental results and indicate strongly that the finiteness of the domain is the major cause 
of the discrepancies between experiment and previous theoretical studies. 

1. Introduction 
Much attention has been given to the incompressible fluid flow produced between 

two aligned, infinitely long, circular cylinders when the inner cylinder performs small 
harmonic oscillations about the centre of the larger one. For definiteness, let us intro- 
duce the notation immediately. If the velocity of the inner cylinder is U$ cos ut*, then 
it is found convenient to use the following dimensionless parameters : 

e = U$/oa, 
(1.1) I M 2  = ua2/v, 

R = U$a/v  = eM2,  R, = U $ ~ / W V  = @M2,  a = b/a. 

Here a and b are the radii of the inner and outer cylinder respectively, and v is the 
kinematic viscosity of the fluid. Throughout this paper, it is assumed that E < 1, i.e. 
the ratio of the amplitude of oscillation is small compared with the radius of the inner 
cylinder, and that the motion is laminar and two-dimensional. 

Segel(l961) studied the allied problem where the larger cylinder oscillates about the 
centre of the smaller one, which is fixed, but restricted his discussion to situations for 
which M < 1. Holtsmark et at. ( I  954) considered a perturbation solution for e < 1 for 
an oscillating circular cylinder both in an unbounded fluid and also for the case where 
there is an outer container. Their results hold formally for M = O(1) and R < 1. 
Skavlem & Tjertta (1955) noted that the outer boundary conditions applied by 
Holtsmark et al. (1954) were not quite correct and repeated the analysis for the con- 
tained-fluid example. Later Wang (1968) used an inner-outer expansion method for 
the R = O(1) regime for an oscillating cylinder in an unbounded fluid. Bertelsen, 
Svardal & Tjertta (1973) obtained new theoretical and experimental results for the two- 
cylinder case for M = O ( l ) ,  and obtained good correlation between their two sets of 
results. 
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However, to  date all theoretical work on the large-R, regime has been restricted to  
the problem of one cylinder oscillating in an infinite medium. Stuart (1963, 1966) and 
Riley (1965) treated the problem of a circular cylinder immersed in a fluctuating 
external flow (any enclosures then being assumed to be a t  infinity). The Stokes layer 
on the single cylinder has a steady secondary component which induces a steady 
streaming through the entire flow field, the character of which is determined by the 
magnitude of the steady-streaming Reynolds number R,. Our eventual concern here 
is with the flow for large values of R,, although we consider also small values (following 
Riley’s (1967) approach) since most of the results are also applicable to  the large-Rs 
regime. For large R, the boundary layers emanating from the poles of the cylinder 
collide a t  the equator, giving rise to a free jet in the fluid; Smith & Duck (1977) con- 
sider the manner of the flow adjustment near the equator. Davidson & Riley (1972) 
observed experimentally that the jet then achieves approximately the Bickley ( 1937) 
similarity jet solution within about one diameter from the point of separation at the 
equator. 

I n  an attempt to reduce the discrepancy between the experimental results of 
Bertelsen (1974) (for the two-cylinder problem) and previous theoretical work for the 
single-cylinder problem, Riley (1975) carried his calculations to an order higher in R;1, 
using the Bickley jet solution to model the complete free jet. This last work is significant 
in that it showed that the R, effects do not resolve all the discrepancies, particularly at 
the edge of the Reynolds boundary layer, where Bertelsen’s experiments (performed 
for a = 13-03 and 20.67, with R, = 400 and 90 in turn) indicated a residual slip. 

One is led, therefore, to consider the influence of large but finite values of a. I n  an 
initial attempt (not reported here) made by the present authors to  describe the 
influence of large values of a, the conclusion was reached that the relative error in the 
one-cylinder approach is as large as O(a-*), which suggests that  the a effects are indeed 
more important than the R, effects in practice. However, a referee kindly pointed out an 
inconsistency in that initial attempt. Accordingly, i t  was decided that the steady- 
streaming problem would best be solved for finite values of a and R,, with a view to 
extracting from the results the trends of the flow solution as a and R, increase. The 
required numerical solutions (of the Navier-Stokes equations) and their trends are 
reported in 3 4 below, and they strongly support the following separated flow model 
(the main points of which bear out the views and expectations of Prof. J. T. Stuart 
1976-7, private communications) for large values of a and R,. The asymptotic solution 
consists of an inviscid core region (the majority of the flow field), which has closed 
streamlines with constant vorticity (Batchelor 1956)) and a closed boundary-layer 
structure, produced by the slip velocity of the core and in which the inner cylinder acts 
as a point source of momentum. Thus the induced jet from the inner cylinder expands 
into the boundary layer, which then hits the outer cylinder a t  its equator and passes 
some way along the outer cylinder. To avoid deceleration (and hence catastrophic 
separation; Stewartson 1970) near the pole, the boundary layer separates in a regular, 
triple-deck, fashion (Sychev 1972; Smith 1977) before reaching the pole and forms a 
free shear layer. This layer sweeps almost unaltered past the inner cylinder, thus giving 
rise to an effective slip a t  the edge of the thin boundary layer there, and finally com- 
pletes the closed circuit by supplementing the original boundary layer. The results 
bear out (see 0 5) our initial conclusion of a {sizable) O(R-4) correction when a is large 
(as well as supporting the referee’s earlier objection) and show much improved corre- 
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FIGURE 1. Definition sketch of the flow problem in the 5 plane. 

lation (see figure 6 below) with Bertelsen's (1974) experiments. Although a-l and R;i 
are comparable in the experiments, it  is the fact that the large-a solution proceeds in 
powers of a-3 which makes the influence of the closed domain so marked. 

Our major effort, then, is aimed a t  analysing the effects of the finiteness of the 
domain in practice. The problem is stated in 5 2 below. A limiting situation is then 
studied in 5 3, namely 1 < M < e-l (R, < l ) ,  and numerical solutions are presented in 
5 4 for O( 1 )  values of R, (and a). This leads into the large-a theory and comparisons 
of 5 5.  For a more detailed survey of the early work on these oscillating viscous flows, 
the reader is referred to Riley ( 1  967). 

2. Statement of the problem 
Suppose that we take polar co-ordinates (r, 0) with origin at the centre of the outer 

(fixed) cylinder, in the z plane, and that the position of the centre of the inner cylinder 
varies as z = cacoswt* (e  < 1), where t* is dimensional time and w the frequency of 
oscillation. The outer cylinder is described by x = beis. We map the z plane onto the 
cplane using a conformal transformation similar to that of Segel (1961): 

z - ea cos wt* - ay 
5 = a + yea cos wt* - zy 

= peii, 

(2.2) 
28 cos wt * 

y = a2 - 1 - €2 cos2 wt* + [(a2 - 1 - €2 cos2 Wt*)2 - 4.52 COS2Wt*]* * 
where 

This transformation maps the inner cylinder onto p = 1 and the outer onto 

so to order e2 the outer cylinder maps to a circle of radius a in the cplane (see figure 1) .  



96 P. W .  Duck and F. T. Xmith 

If we non-dimensionalize (time with respect to l/w, distances with respect to a )  and 
introduce a stream function $, the Navier-Stokes equations may be written in the form 

Here the Jacobian J = J(p, q5, t )  is given by 

and 

4pe cos t cos q5 
= 1- + O(e*) a2- 1 

(2.4) 

( 2 . 5 )  

The boundary conditions are as follows: 

a$/aq5 = a$/ap = o on p = 01 + O(@), (2.7a, b )  

r -  --- 
alL. . , . . e sin 2t sin2d _, "~ 1 

( 2 . 8 ~ )  

nn n =  1. 

(2.8b) 

e sin 3t cos 2 4  
a2- I + O(e2) _ -  " - -cos+ sint+ 

aq5 

aP a2- 1 ' +"V _ -  . - -sin(D smt+ 

The basic task, then, is to solve (2.4)-(3.8), which we now attempt for small values 
of e. We consider two particular regimes determined by the order of the non-dimensional 
parameter R,. 

3. Small steady-streaming Reynolds number R, 
This case is considered in detail because, although we shall eventually be concerned 

(in 99 4 and 5) with O( 1) or large values of R,, most of the results here are directly 
applicable in $9 4 and 5 below. We expand the stream function in the following way: 

(3 .1)  $(x, t ,  Jf, 8) = $o(x, t ,  H) + d$P)(x, t ,  M )  + $P@, M)1+ W2).  
Then the equations for the $i are 

a(A$,)/at = Mp2AA$,, (3.2) 
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where superscripts (s) and (u) denote steady and unsteady components respectively. 
The boundary conditions for k0 are 

a$-,/aq5 = a$o/ap = 0 on p = a, (3.5a) b) 

= -cosq5sint, a$o/ap = -sin$ sint on p = 1. (3.6u)b) 

If we now let M become large and expand $o in the form 

$&, t ,  M )  = $oo(x, t) + M-l$01(x, t )  + O(M-2), (3.7) 

a(A$oo)/at = 0. (3 .8 )  
then $oo satisfies 

Because of the inviscid governing equation, the boundary conditions (3.5 b) and (3.6b) 
are relaxed, so 

sin t sin q5 ( 5) 
p-- . $oo= a 2 - 1  (3.9) 

I n  order to satisfy the slip conditions (3 .5  b) and (3.6 b) there must be an inner boundary 
layer (the Stokes shear-wave layer). From standard boundary-layer arguments, this 
inner layer is of thickness O(M-l )  and we rescale $ and p as follows: 

forp - 1. 
ep2 sin 2t sin 2q5 

7 = M ( p -  1)/23, Y = $+psin$ sint- 
23 2(a2- 1) 

f = M(a - p ) / 2 i 9  = M$/23  for p N a. 

We then expand Y(7, q5, t ,  M, e) as 

'P" = YOO(7,$> t )  + M-lYOl(% 4, t )  + O(M-2) + @%)(7, q5, t )  4- Y$(r, 9) + O(M-2)1 

+O(e2), (3.10) 
and similarly for q(17j, q5, t ,  M ,  e ) .  Writing 

- 
Yo, = (2i)-1 sin q5[Xoo(7) eit - Soo(q) e-it] (3.11) 

(a bar denoting a complex conjugate), substituting into (3 .2 )  and equating O ( M )  
terms gives 

The condition a t  7 = 00 is obtained from [a$oo/ap]p=l. Similarly 

(3 .12 )  

(3.13) 

The term $ol gives a correction to the inviscid flow and, omitting the details, we 

find that $01 = (a2- 1) 2a  (1 -a) sin qi sin (t - an) " -;+" - P I .  (3.14) 

Writing Yol = (2i)-1sin +[Xol(7) eit - Xol(q) e-it], (3.15) 

the inner solution near p = 1 that matches with (3.14) is found to be 

ia(a2-a+4) 2 3 4 1  - i )  (2-a++2)7 
{exp [ - (1 + i )  71 - l} - 4 n ( 7 )  = 2qa2 - 1) (1 - a )  (a2 - 1) ( 1 - a )  

4 

a2 
{2y2+  (1 -i)yexp [ - (1 + i )  71). (3.16) - 

23(a2- 1) 
F L M  91 
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1 - {2iq2+ ( 1  - i )  qexp [ - (1  + i )  q]>. (3.17) 

In principle the process of determining the $oi, Yoi and poi may be continued 
indefinitely. 

Consider next the O(E)  terms. We split these into two components, one unsteady, the 
other steady, the governing equations being (3.3) and (3.4) respectively. The boundary 
conditions for are 

a$.,/a$ = a$Jap = 0 on p = a, (3.18u, b )  

( 3 . 1 9 ~ )  

(3.19 b )  

24(a2- 1 )  

a$l/aq5 = sin 2t cos 2#/(a2- 1 )  

ag l /ap  = sin 2t sin 24 / (a2  - 1 ) j 
1 on p = l .  

If we again expand in inverse powers of M ,  for example 

= $%) + i!f-'$E) + O(M-2) ,  (3.20) 

we find a(a$$$)/at = 0. (3.21) 

Then using ( 3 . 1 8 ~ )  and (3.19u),  whilst relaxing (3.18b) and (3.19b), we obtain 

(3.22) 

Again a Stokes layer is assumed in order that (3.18b) and (3.19b) may be satisfied. 
We write 

YE) = (2i)-l [ X # ( q )  e2it - T$) e-zit] sin 2$ (3.23) 

(and similarly for q$$) and find, using (3.3) and taking terms O ( M ) ,  that 

a4 201411 
(3.24) 

(a2-1)2(1+a2)'  
exp [ - ( 1  + i )  q] - -- 

(012- 1)2 

a 2a4 
(3.25) 

(as- 1)2(1+a2)'  
+- a exp [ - (1 + i )  43 + 

(a2- 1)2 ?I 

If ' rg) = X g ) ( q )  sin 24, the problem for X#(q)  may be stated in the form 

X$,)&O) = X$,)(O) = 0, X$)7(.o) finite, (3.26) 

where the governing equation for Y# is obtained from (3.4). The solution for Xfi) is 
found to be given by 
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Similarly a%($) is given by 

3 13+8a2  1 e-21 
X%(f))  = - Za(a2- 1 ) 2  ' + 4 a ( a 2 -  1 ) 2 - 4 a ( a 2 -  1 ) 2  

We note that the Stokes layer near p = 1 produces a slip given by 

whilst the Stokes layer near p = a produces a slip given by 

(3 .29)  

(3 .30)  

The two other boundary conditions for $$) are 

and the governing equation is found to be the biharmonic equation, i.e. 

Ah@# = 0. 
The solution is then given by 

(3 .32)  

11.8 = [3 /4a (a2-  1 ) 4 ]  {(I + a4) p4 - ( 1  + a2) ( 2  - 0 1 2 +  2a4) p2 

+ ( 1  + 2a2+ 2a6+ a*) - a2( 1 + a 6 ) / p 2 }  sin 2$. (3 .33)  

It can be shown that, in the limit a + 03, Xoo(q) ,  Xol(q), X k ) ( q )  and X$)(q)  reduce to 
the forms stated by Riley (1967) and Wang (1968) for the one-cylinder problem. 
Similarly the work for M = O( 1 )  by Bertelsen et al. (1973)  for two cylinders almost 
certainly reduces to (3 .33)  in the limit M +a, although the algebra involved in 
verifying such a limiting process proves prohibitive. 

4. Numerical solutions for O ( 1 )  values of R, and a 
When R, is O( l ) ,  expanding in the same way as in $ 3 ,  we find that $oo, $ol, Yo,, Yo,, 

Too, qol, @), Yg) and '&$) are unchanged. However it is found that the steady- 
streaming function $8) is now given by 

i.e. $$) is governed by the full steady Navier-Stokes equation and determines the 
steady streaming. This follows from consideration of the (steady) terms O(e3)  in the 
basic equation ( 2 . 4 ) )  in much the same way as in Riley's (1967) analysis. The problem 
now [ (4 .1)  with (3.29)-(3.31)] isidentical with Stuart's (1966) andRiley's (1965) except 
for the presence of the outer cylinder and the slip velocity (3 .30)  on it. 

Clearly, to compare with the experiments of Bertelsen (1974) it  would be most 
desirable to obtain the asymptotic solution [to (4 .1 )  with (3.29)-(3.31)] for large values 
of R, and a. Our initial attempt (referred to in 9 1 )  a t  such a solution proved unsuccess- 
ful, however, mainly because it was based on a predominantly jet-like model with 

4-2 
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FIGURE 2. Separating streamlines calculated for (i) R, = 50, a = 10, 

(ii) R, = 70, a = 10 and (iii) R, = 90, a = 10. 

attached flow. Therefore we undertook a numerical investigation of the Navier-Stokes 
problem (4.1) with (3.29)-(3.31) for a number of values of a and R,. 

The numerical method was an adaptation of that  of McConalogue & Srivastava 
(1968). The stream function $8) and the vorticity were expressed in sine series in $: 

giving the infinite set of equations 

2’’ + - 1 z ’ - - 4m2 z = R, - [j2&-jYj - (m -j) zrn-jy;l 
* P  P2 p j = - m  

1 4m2 
and 

from (4.1). Here we define 

z, = up;+ - YA-- Y,, 

Yrn = - Y-m, 2, = - 22,. 

P P2 

The boundary conditions on (4.2) and (4.3) are [from (3.29)-(3.31)] 

Yrn(l) = YJa)  = 0, 

Y&(1) = Y&) = 0 (m * 1 ) ,  

Y;( 1 )  = 3a4/2(a2 - 1)2, Y;(cc) = 3/2a(a2 - 1)2. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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FIGURE 3. Shear stress (scaled with Rt) r = (82$yi/8pz) R;!i on the outer cylinder as a function 
of I$ for (i) R, = 50, a = 5 ,  (ii) R, = 90, a = 10, (iii) R, = 70, a = 10, (iv) R, = 50, a = 10, 
(v) R, = 50, CL = 20.67. 

Next, each of the second-order equations (4.4) and (4.5) was broken down into two 
first-order equations, giving an infinite coupled set of first-order differential equations. 

To solve this infinite set approximately, the system was first truncated and 
then discretized (using second-order differencing). The discrete system was solved 
iteratively, using pivoting in order to invert the resulting difference matrix equations. 
Generally, 15-20 terms in the series were taken, with 701 mesh points. The accuracy 
of the calculations was seen to decrease with increasing Reynolds number R, and a, 
although the results presented here appeared to be accurate to a t  least within 5 % .  
With increasing R,$ and a more under-relaxation was necessary, the old value of the 
YP, being updated by as little as 1 yo of the calculated value in the most critical of the 
cases attempted. 

One of the most noticeable features of the results is the region of separated flow 
which grows with increasing R,. The separating streamlines for a = 10 and R, = 50, 
70 and 90 are shown in figure 2. In  figure 3 the variation with Reynolds number of the 
shear stress on the outer cylinder is plotted in the scaled form 7 = $gb,(p=a)/R! 
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FIGURE 4. Graphs of the velocity component w4 against radial distance r /a  for (a )  R, = 50, cc = 10, 
( b )  R, = 90, a = 10 and (c) R, = 50, a = 20.67. (i) 9 = in-0.1,  (ii) cjh = in- 1, (iii) 4 = In- 1-3, 
(iv) 4 = in-0.5. 
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FIGURE 5 .  The dependence of the vorticity 5 ( E -A$:;) on radial distance r la .  
(a ) - ( c )  and (i)-(iv) correspond to  same cases as in figure 4. 
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against 4, as suggested by boundary-layer theory. The three sets (ii)-(iv) for a = 10 
show quite good correlation in figure 3, despite the likelihood of appreciable changes in 
the structure with varying Reynolds number because of the flow separation from the 
outer wall. Figures 4 (a)-(c) show the distribution of tangential velocity w4 for a = 10 
with R, = 50, for a = 10 with R, = 90 and for a = 20.67 with R, = 50, respectively. 
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FIGURE 6 .  Comparison between the present solutions (NS)  and Bertelsen’s ( 1974) experimental 
results (circles) for the velocity vd 21s. y when R, = 90, a = 20.67 and 4 = an- 1.  Also shown 
are the solutions of Stuart (1966) and Riley (1965) (RS) and of Riley (1975) (R) for the one- 
cylinder problem. 

We note in passing that these solutions have not been corrected for Stokes drift or for 
the transformation correction. However, outside the Stokes layer, the Stokes drift is 
of course negligible and i t  is a simple matter to transform the O(e) steady-streaming 
results from the 6 plane to the physical (2) plane.? All three sets of results exhibit 
similar characteristics for v$. As the distance from the inner cylinder increases the 
velocity initially falls and reaches a positive plateau value; i t  then drops again to 
become negative, before returning to order on the outer cylinder. Figures 5 (a)-(c) 
show the corresponding vorticity distributions. Comparison of the solutions for 
CL = 10 when R, = 50 and R, = 90 indicates that the core is becoming a region of 
constant) vorticity as R, + a3 (Batchelor 1956), with the streamlines in the core flow 
becoming closed. 

Next we compare our solution of the full Navier-Stokes equations with the experi- 
mental results of Bertelsen for the case cc = 20.67, R, = 90. The comparison is shown in 
figure 6, where the tangential velocity a t  4 = +T - 1 is presented and Bertelsen’s (1974) 
normalization is used. The solution of the full equations of motion reproduces the 
experimental results to almost graphical accuracy, and in particular predicts a 

t A referee has kindly pointed out that the transformation from the 5 to the z plane is more 
complicated within the Stokes layer, however. 
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FIGURE 7 .  Sketch of the (core/boundary-layer) flow structure when R, 1 and a = O(  I ) ,  
including the separation at Q = $eep on the outer cylinder. 

residual outer slip a t  the edge of the Reynolds boundary layer (the boundary layer 
associated with the steady-streaming Reynolds number R, when R, B 1). 

For a fixed value of a,  therefore, the numerical flow solutions as R, increases vary 
with R, according to the orders of magnitude associated with classical boundary-layer 
theory, while the core vorticity tends to a uniform value. A sketch of the general large- 
R, flow is shown in figure 7. When R, 1 [but a is O( l ) ]  the O(Ri4) boundary layer 
@ on the inner cylinder is driven [both by the inner-wall slip (3.29) and the core slip 
velocity] towards the equator, where i t  forces a free shear layer @) (see Davidson & 
Riley 1972; Smith & Duck 1977) towards the outer cylinder. The shear layer then 
attaches to the outer cylinder and forces a boundary layer @ away from the equator. 
This boundary layer is driven by the core slip velocity and the outer-wall slip (3.30), but 
to avoid deceleration (and hence a catastrophic separation; Stewartson 1970) near the 
pole, i t  separates before reaching the pole, the separation (at q5 = q5,,, in figure 7) 
presumably being of the triple-deck, free-streamline, kind (Sychev 1972; Smith 1977). 
The shear layer @,! formed beyond separation constitutes part of the boundary for the 
core of uniform vorticity and (after the collision a t  the point E in figure 7) i t  supple- 
ments the original boundary layer @ on the inner cylinder by attaching a t  that 
cylinder’s pole (see figure 7). Following Stewartson (1958) and Lyne (1971), we assume 
that the velocity profiles a t  the ends of each boundary layer are convected around 
corners essentially unchanged. Smith & Duck’s (1977) analysis of the end B confirms 
that this approximation is fairly satisfactory. In  91 layers a-@, @$ and the trans- 
verse co-ordinate n are both O(R;)) [@g = R;gY and n = R;*y, say], so that the 
streamwise velocity a&)/an is O( I). The typical slip velocity of the core is also O( 1). So 
the layers @-a) I are all controlled by the classical boundary-layer equations (we let x 
denote streamwise distance in each case) and have to  match to the core slip velocity a t  
their outer edges. The other boundary conditions are the wall slips (3.29)-(3.31) in @ 
and (3, a symmetry condition in @) and a zero-velocity condition in @) [at least, until 
layer @ collides with the line of symmetry 0 = 477 a t  E (figure 7) ,  after which a sym- 
metry condition becomes appropriate on EA ; the collision a t  E is a form of reattach- 
ment and the flow details near such a reattachment are as yet unknown]. Between 
layer @ and the outer cylinder it is assumed that a relative slow eddying flow takes 
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place, implying that, between separation and the point E ,  @ acts as a free streamline 
(of constant pressure) for the inviscid core. This assumption is consistent with the 
triple-deck separation of @ (see Sychev 1972; Smith 1977) and seems in keeping with 
our numericaI solutions (figures 2 and 3). 

The above, separated-flow description for R, 9 1 with a = O( 1) agrees quantitatively 
with our Navier-Stokes solutions (figures 2-45), which in turn agree well with Bertelsen's 
(1974) experimental observations (figure 6). We consider next ( $ 5 )  the properties of 
the above separated-flow description when a (as well as R,) is large. 

5. The flow model for large values of a and R, 
Suppose then that, in the large-R, flow description a t  the end of 3 4, a is large, i.e. 

that the radius of the outer cylinder is much larger than that of the inner (Bertelsen 
(1974) has a = 13.03 and 20.67). When a > 1 the boundary-layer motion acquires two 
distinct length scales, in both the x and the y direction, as depicted in figure 8. Further, 
we may ignore hereafter the slip on the other cylinder, since it is only O ( c 5 ) .  

We postulate now that the velocities in the viscous layers @-@ and in the inviscid 
core solution outside are an order lower in a-1 than the maximum velocities in the 
boundary layer 0. Hence the majority of @ has a jet-like form. So, after the collision 
a t  the equator B, a free jet is generated [when xis O( l)]  and asymptotes to the similarity 
form of Bickley (1937) on an x scale 9 1 (cf. Davidson & Riley 1972) but < a. Then, 
because in the Bickley solution the jet thickness grows like xs while its velocity decays 
like x-9, the velocities along most of @ (and hence @) and @) are O(a-*) only, but with 
a typical transverse (y) scale O(a3) [since, also, xis O(a)  in 0, @ and @I. Consequently, 
we split 0 into two parts I and I1 (see figure 8) wherein y N 1 and Y N 1 respectively 
(here Y = a-Qy). Further, we expand the stream function in the two parts as follows: 

*.*'I 91 = Ti(., y) + a-W.:(x, y) + 
Y I I  = aWP( Y )  +Y!I(X, Y )  + . . ., h 

where x = ax. The main term in I, FE(x, y), is precisely that discussed by Stuart 
( 1966) and Riley (1965) and is the solution of the boundary-layer problem for a single 
cylinder : 

I 

Yi(x, y) = 3 h [ 1 -  exp ( - 34y)] + O(x3). 

h 

Y&(x, 0) = #sin 2x. 

It can be shown that, for x small, 
h 

(5.3) 

To detail the effects of finiteness of the domain we also need the next-order term in I, 
which satisfies 

(5.4) 

A h  A h  A h  

Yix, + %, %xu - %z Ti,, - 

+i(x, y) = ~ ( y )  + 0(x2) for x small, 

%uu = 
h h 

Yi(X, 0) = Y & ( x ,  0) = 0, 
A 

Yi,(x, co) = K (constant), 
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A B C E A 

FIGURE 8. The structure of the boundary-layer flows Q-@ 
when a is large, according to 3 5. 

-X 

where 

co m 

cn = -cn-l(n- 2) /n2  (n > 3), C, = $K,  A, = C C,, A, = C nC,. (5.6) 
n=3 n=3 

The unknown constant K here is due to the slip of the main profile Ykl'( Y )  in I1 as 
Y- tO:  

The motion in the outer part I1 remains independent of x to first order because the 
typical streamwise length scale associated with the profile 'FA( Y )  is O(a) ,  not O( 1) (see 
below). We therefore suggest that the slip a t  the edge of the O(Ri4 )  boundary layer I, 
as observed by Bertelsen (1974), is due to the different length scales arising when 
a 9 1, for which the boundary layer @ spreads out to a thickness O ( d )  (in order to 
accommodate the Bickley jet from B )  and returns, via @, as a much slower, but thicker 
layer. 

The constant K is determined by the longer-scale flow in @-a on the scale X - 1 
and by the inviscid core, without direct recourse to 0. Since, in 0-0, X and Y (rather 
than x and y) are O( 1)) while the expansions (implied by the Bickley jet form) for $! and 
the corresponding streamwise velocity a are 

Y )  = K Y  + o( Y3) as Y -+ 0. (5.7) 

I 9 = a) +',(X, Y )  + O( l), 

a = a-f.;i,(X, Y )  + O(a-f) ,  

the governing equations for $',(X, Y )  and a,(X, Y )  in layers @-@ remain the classical 
boundary-layer equations. The matching conditions a t  the edges of @-a join the flow 
to the slipping motion of the inviscid core, wherein 

@$,) = a$hc(p/a, $) + O(aa), A@c = - w, (constant) (5.9) 

because the slip velocity is O(a-*) from (5.8). The inner conditions on @-a require 
symmetry along @, no slip along @) and zero velocity along @ (except on EA,  where 
symmetry is required). Figure 8 is a sketch of the large-a boundary-layer flow structure. 



108 P .  W .  Duck and F. T. Smith 

$J 
FIGURE 9. Graphs of a times the effective shear stress 7 (on the outer cylinder) against 4 for 

(i) R, = 50, a = 5, (ii) R, = 50, a = 10 and (iii) R, = 50, a = 20.67. 

The cause of this longer-scale behaviour is the starting form of layer 0, which has a 
double structure [(i) and (ii) below] for X small, reminiscent of the Goldstein (1930) 
wake. 

I n  (i), where Y - X % ,  
9o = X+go(r) + O ( X %  (5.10) 

where 7 = Y/x’3. Here g o ( q )  is the Bickley jet solution, i.e. 

where 
(5.11) 

and N is the momentum flux in the jet. This starting form matches the finite-scale (x) 
solution in 0 with the long-scale (X) solution in @. Thus effectively the Bickley jet is 
buried within the thicker classical boundary layers @-a when CI is large, even though 
in a sense the Bickley jet is itself responsible for setting up the flows in @-@. 
In  (ii), where Y - 1 ,  

.Eo = Y , ( Y ) + X + Q ~ ( Y ) + O ( X ~ )  for x < I ,  (5.12) 

where Yo( Y )  is the terminal profile of @, in (5.1) and (5.7). Hence the inner cylinder 
plays the role of a point source of momentum, generating a free shear layer in 0, 
a boundary layer in @ and another free shear layer in @. The x-scale and X-scale 
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0 

-0.4 

-0.6 

FIGURE 10. Graphs of a* times the core velocity w6 against r /a  for 
(i) R, = 50,a = 10 and (ii) R, = 50, a = 20.67. Here 4 = in- 1. 

motions match via (5.10)-(5.12) and because the shear layer in @ feeds into the outer 
part I1 of the boundary layer @ and so sweeps almost unaltered past the inner cylinder. 
It then completes the circuit by joining into 0, through the outer zone (ii) of (5.12) 
(see figure 8). 

The (small) core vorticity [a-*wc, from (5.9)] is fixed by the condition of periodicity. 
Once w, and hence the layers @--a have been determined, the constant K ,  which gives 
the residual slip a t  the edge of part I of the inner cylinder's boundary layer, follows 
from (5.7). We have not attempted to solve the large-a problem of layers @I-@ with 
the inviscid core, because the separation of @ and the unknown position of @ introduce 
extreme difficulties. However, the predictions of this large-a theory are found to be 
very much in line with the trends of the Navier-Stokes solutions of 5 4 as a increases 
there. Thus the a-l variation [proposed by (5 .8 ) ]  in the effective (R,-scaled) wall shear 
7 = [aa/ay],,,, on the outer cylinder seems to  be well borne out in figure 9, where 
graphs of a times the effective wall shear 7 of figure 3 are presented. The numerical 
solutions appear to approach a limit as suggested. Also, as is shown in figure 10, where 
the results for a = 10, 20-67 and R, = 50 are shown in resealed form, the full Navier- 
Stokes solutions do seem to produce the O(a-*) velocity in the inviscid core, as pre- 
dicted by the asymptotic theory (5.9). 

6. Conclusion 
We believe that the Navier-Stokes solutions of $ 4  have demonstrated the importance 

of the outer cyIinder in the two-cylinder problem, resolving (see figure 6) the discre- 
pancy between the experimental results of Bertelsen ( 1974) and previous (one-cylinder) 
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theories. The solutions of the full Navier-Stokes equations also appear to  agree 
remarkably well with the asymptotic theory ( $ 5 )  for a 1,  especially when one 
considers that the values of a-4 in the examples computed were fairly large 

(10-3 = 0.459, (20.87)-4 = 0.365) 

whereas the asymptotic theory required a-3 < 1. Indeed, it is the fact that  the influence 
of the outer cylinder decays only as a-4 that makes the outer-cylinder effect so 
significant even when a is large. On the other hand, although the problem for calcu- 
lating the slip constant K when a: >> 1 has been posed ( 9  5 ) ,  the numerical work involved 
in such a calculation is formidable. The main difficulty concerns the unknown position 
of the separating streamline from the outer cylinder (see figures 3 and 7) .  However, the 
expansions given in 5 5 are believed to provide a self-consistent account of the overall 
motion when a is large, and the tests in figures 9 and 10 support this view. 

The authors wish to thank Professor J. T. Stuart for many helpful discussions con- 
cerning this work, and the referees for pointing out errors in an earlier version of this 
paper. One of us (PWD) acknowledges the receipt of an S.R.C. post-doctoral research 
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